Halbleitertechnologie von A bis Z

Alles über Halbleiter und die Waferfertigung

1. Leiter

Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene Energiearten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen Stroms im Vordergrund.

Metalle
Die Leitfähigkeit von Metallen beruht auf den freien Elektronen die bei der Metallbindung als Elektronengas vorliegen. Bereits mit wenig Energie werden genug Elektronen von den Atomen gelöst um eine Leitfähigkeit zu erreichen.

Metallbindung: Feste Atomrümpfe und freie Valenzelektronen (Elektronengas)

Metallbindung

Die Leitfähigkeit hängt unter anderem von der Temperatur ab. Steigt diese an, schwingen die Atomrümpfe immer stärker, so dass die Elektronen in ihren Bewegungen behindert werden und infolge dessen der Widerstand ansteigt. Die besten Leiter, Gold und Silber, werden auf Grund der hohen Kosten relativ selten eingesetzt (Gold u.a. bei der Kontaktierung der fertigen Chips). Die Alternativen in der Halbleitertechnologie zur Verdrahtung der einzelnen Komponenten eines Chips sind Aluminium und Kupfer.

Salze
Neben Metallen können auch Salze elektrischen Strom leiten. Freie Elektronen gibt es hier jedoch nicht. Die Leitfähigkeit beruht auf den Ionen die sich beim Schmelzen oder Lösen von Salzen aus dem Gitterverbund lösen und frei beweglich sind (siehe Thema Bindungen).

2. Nichtleiter

Nichtleiter besitzen keine freien Ladungsträger in Form von Elektronen oder Ionen. Nichtleiter nennt man auch Isolatoren.

Atombindung
Die Atombindung beruht auf gemeinsamen Elektronenpaaren von Nichtmetallen. Die Elemente mit Nichtmetallcharakter haben alle das Bestreben Elektronen aufzunehmen, somit sind keine freien Elektronen vorhanden die eine Leitfähigkeit bewirken könnten.
Ionenbindung
Im festen Zustand sind Ionen in einem Gitterverbund angeordnet. Durch elektrische Kräfte werden die Teilchen zusammengehalten. Es sind keine freien Ladungsträger für den Stromfluss vorhanden. So können Stoffe, die sich aus Ionen zusammensetzen, sowohl Leiter (im gelösten Zustand) als auch Nichtleiter sein.

3. Halbleiter

Halbleiter sind Feststoffe, deren Leitfähigkeit zwischen der von Leitern und Nichtleitern liegt. Durch Elektronenaustausch gleichartiger Atome, um das Elektronenoktett zu vervollständigen, ordnen sich diese als Gitterstruktur an. Im Gegensatz zu Metallen nimmt die Leitfähigkeit mit steigender Temperatur - bis zu einem gewissen Maß - zu.

Durch den Temperaturanstieg brechen Bindungen auf und Elektronen werden freigesetzt. An der Stelle an der sich das Elektron befand verbleibt ein so genanntes Defektelektron (auch Loch).

Ausschnitt aus einem Siliciumkristall

Der Elektronenfluss beruht auf der Eigenleitfähigkeit von Halbleitern. Das so genannte Bändermodell veranschaulicht, warum sich Halbleiter so verhalten.

4. Das Bändermodell

Das Bändermodell ist ein Energieschema, mit Hilfe dessen man die Leitfähigkeit von Leitern, Isolatoren und Halbleitern beschreiben kann. Das Modell besteht aus zwei Energiebändern (Valenz- und Leitungsband) und der Bandlücke. Die Valenzelektronen - die als Ladungsträger dienen - befinden sich im Valenzband; das Leitungsband ist im Grundzustand nicht mit Elektronen besetzt. Zwischen den beiden Energiebändern befindet sich die Bandlücke, ihre Breite beeinflusst u.a. die Leitfähigkeit.

Die Energiebänder: Betrachtet man ein einzelnes Atom, so gibt es nach dem Bohrschen Atommodell scharf voneinander getrennte Energieniveaus, die von Elektronen besetzt werden können. Befinden sich mehrere Atome nebeneinander, so stehen diese miteinander in Wechselwirkung und die diskreten Energieniveaus werden aufgefächert. In einem Siliciumkristall gibt es ca. 1023 Atome pro Kubikzentimeter, so dass die einzelnen Energieniveaus nicht mehr von einander unterscheidbar sind und breite Energiebereiche bilden.

Aufspaltung von Energieniveaus durch Wechselwirkung von Atomen

Energieniveaus

Die Breite der Energiebänder hängt davon ab, wie stark die Elektronen an das Atom gebunden sind. Die Valenzelektronen im höchsten Energieniveau wechselwirken stark mit denen der Nachbaratome und können relativ leicht vom Atom gelöst werden, bei einer sehr großen Anzahl an Atomen lässt sich ein einzelnes Elektron nicht mehr einem bestimmten Atom zuordnen. In Folge dessen verschmelzen die Energiebänder der einzelnen Atome zu einem kontinuierlichen Band, dem Valenzband.

Energiebänder durch in Wechselwirkung stehende Atome

Potentialtöpfe

Das Bändermodell bei Leitern: Bei Leitern ist das Valenzband entweder nicht voll mit Elektronen besetzt, oder das gefüllte Valenzband überlappt sich mit dem leeren Leitungsband. In der Regel treffen beide Zustände gleichzeitig zu, die Elektronen können sich also im nur teilweise besetzten Valenzband oder in den zwei sich überlappenden Bändern bewegen. Die Bandlücke, die sich zwischen Valenz- und Leitungsband befindet, existiert bei Leitern nicht.

Das Bändermodell bei Nichtleitern: Bei Isolatoren ist das Valenzband durch die Bindungen der Atome voll mit Elektronen besetzt. Sie können sich darin nicht bewegen, da sie zwischen den Atomen "eingesperrt" sind. Um leiten zu können müssten sich die Elektronen aus dem voll besetzten Valenzband in das Leitungsband bewegen. Das verhindert die Bandlücke, die zwischen Valenz- und Leitungsband liegt.

Nur mit sehr großem Energieaufwand (falls überhaupt möglich) kann diese Lücke überwunden werden (in der Bandlücke darf sich nach den Gesetzen der Quantenphysik kein Elektron aufhalten).

Das Bändermodell bei Halbleitern: Auch bei Halbleitern gibt es diese Bandlücke, diese ist im Vergleich zu Isolatoren aber so klein, dass bereits bei Raumtemperatur Elektronen aus dem Valenzband in das Leitungsband gelangen. Die Elektronen können sich hier nun frei bewegen und stehen als Ladungsträger zur Verfügung. Jedes Elektron hinterlässt außerdem ein Loch im Valenzband, welches von anderen Elektronen im Valenzband besetzt werden kann. Somit erhält man wandernde Löcher im Valenzband, die als positive Ladungsträger angesehen werden können.

Es treten immer Elektronen-Loch-Paare auf, es gibt also ebenso viele negative wie positive Ladungen, der Halbleiterkristall ist insgesamt neutral. Ein reiner, undotierter Halbleiter wird als intrinsischer Halbleiter bezeichnet, pro Kubikzentimeter gibt es in etwa 1010 freie Elektronen und Löcher (bei Raumtemperatur).

Da die Elektronen immer den energetisch günstigsten Zustand annehmen, fallen sie ohne Energiezufuhr wieder in das Valenzband zurück und rekombinieren mit den Löchern. Bei einer bestimmten Temperatur stellt sich ein Gleichgewicht zwischen den ins Leitungsband gehobenen und den zurückfallenden Elektronen ein. Mit zunehmender Temperatur erhöht sich die Anzahl der Elektronen, die die Bandlücke überspringen können. Mit steigender Temperatur nimmt also die Leitfähigkeit von Halbleitern zu.

Das Bändermodell

Bändermodell

Da die Breite der Bandlücke einer bestimmten Energie und somit einer bestimmten Wellenlänge entspricht, versucht man, die Bandlücke gezielt zu verändern um so bestimmte Farben bei Leuchtdioden zu erhalten. Dies kann u.a. durch Kombination verschiedener Stoffe erreicht werden. Galliumarsenid (GaAs) hat eine Bandlücke von 1,4 Elektronenvolt (eV, bei Raumtemperatur) und strahlt somit rotes Licht ab.

Die Eigenleitfähigkeit von Silicium ist für die Funktionsweise von Bauelementen uninteressant, da sie sehr stark von der zugeführten Energie abhängt. Sie ändert sich also auch mit der Betriebstemperatur, eine mit Metallen vergleichbare Leitfähigkeit stellt sich zudem erst mit sehr hohen Temperaturen ein (mehrere Hundert Grad Celsius). Um die Leitfähigkeit von Halbleitern gezielt zu beeinflussen, können Fremdatome in das regelmäßige Siliciumgitter eingebaut, und damit die Ladungsträgerkonzentration von Elektronen und Löchern eingestellt werden. Dies nennt man dotieren.